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ABSTRACT

Statistical graphics for displaying aggregate "'C data include the histogram, bar chart,
and cumulative probability curve. An alternative graphic, the annual frequency
distribution diagram, is described. The graphical limitations of the histogram and bar
chart are well known and a potential problem with the temporal interpretation of
cumulative probability curves exists. The annual frequency distribution diagram is free
of these limitations and potential problem. The construction of annual frequency
distribution diagrams and bootstrap confidence intervals is described. Computer
programs for constructing cumulative probability curves and annual frequency
distribution diagrams with bootstrap confidence intervals are made available for
general use.
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INTRODUCTION

Radiocarbon dates are an indispensable tool for archaeologists working with the space/time
systematics of prehistory. They are used primarily to give absolute dates to events that
otherwise could be placed only in relative order, a fact that underscores the importance of
the dated event in prehistoric interpretation. Recently, however, as the number of
radiocarbon dates available for analysis has grown, radiocarbon dates have begun to be
analysed on their own as aggregate data sets whose chronological distribution can be used
as a basis for inferences on the duration and intensity of some cultural trait. In the Pacific,
three statistical graphics have been used to portray the chronological distributions of
aggregate radiocarbon dates: the histogram, its close relative the bar chart, and the
cumulative probability curve. After pointing out some limitations of the histogram and the
bar chart, and a potential difficulty with the temporal interpretation of the cumulative
probability curve, we describe an alternative statistical graphic, which we call the annual
frequency distribution diagram. The annual frequency distribution diagram is a logical
extension of the histogram, bar chart, and cumulative probability curve, whose properties
make it preferable for certain types of analyses. A set of computer programs that construct
cumulative probability curves and annual frequency distribution diagrams from the output
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of the CALIB program (Stuiver and Reimer 1986) are described and made available for
general use.

GRAPHICAL REPRESENTATIONS OF AGGREGATE "“C DATA

The simplest graphical representations of aggregate "*C data are the histogram and bar chart,
both of which are widely used to summarise data distributions (Chambers er al. 1983: 24
ff.). The bar chart has a history that stretches back to the development of statistical graphics
in the eighteenth century (Tufte 1983: 33). Histograms and bar charts are constructed by
dividing the range of data into equal intervals, counting the number of observations in each
interval, and plotting the counts as bar lengths. Histograms with interval widths of 200 years
and bar charts with interval widths of 100 years have recently been used to portray the
chronological distribution of calibrated radiocarbon dates from archaeological sites in the
Pacific (Hunt and Holsen 1991; Kirch and Hunt 1988). This approach has a number of
drawbacks. First, both displays reduce the information in the data by combining disparate
observations in the same interval. In practice, the choice of a suitable interval width is
governed by the amount of accuracy that can be tolerably lost; the wider the interval the
greater the loss of accuracy (Cleveland 1985: 125). Second, the placement of the intervals,
routinely determined by the desire to have intervals range between (wo round numbers, can
affect the appearance of a histogram or a bar chart and lead to quite different impressions
about the distribution of the data (Chambers et al. 1983: 24 ff.). Third, the bar comers are
determined by the choice of interval width, but convey little information about the data.
Finally, and perhaps most important, both the simple histogram and the bar chart ignore
information carried in the statistical uncertainty (the + term) of the radiocarbon age. A wide
variety of statistical graphics has been developed to overcome these and other graphical
limitations of the histogram and the bar chart (Chambers et al. 1983), and the problem of
ignoring the statistical uncertainty of the radiocarbon age was partially overcome by Geyh,
who used a histogram approximation of a Gaussian curve to add in the effects of statistical
uncertainty for each sample (Geyh 1980; Geyh and Maret 1982).

A second graphical representation of aggregate *C data was developed by Law for Black
and Green (1977). Law described the displays he produced as smooth frequency curves, but
they were later named cumulative probability curves by Anderson (1989), whose displays
were constructed by Foss Leach. The first step in their construction uses the radiocarbon age
and statistical uncertainty to construct a Gaussian curve for each age determination. The
Gaussian curve is used because it approximates the expected radiocarbon age distribution
of multiple determinations for a single radiocarbon sample (Taylor 1987: 103, Fig. 4.15) and
thus takes into account the statistical nature of the radiocarbon dating process. Gaussian
curves for a suite of age determinations are summed to produce an aggregate curve whose
smoothness depends on the interval width. The apparent smoothness of Anderson’s
aggregate curves is due to the use of an effective interval width of one radiocarbon year and
an x-axis scale several hundreds of radiocarbon years wide. Law’s curves, which span a
period of over 3 millennia, appear smooth with an interval width of ten years. Cumulative
probability curves, which incorporate the information in the statistical uncertainty of the
radiocarbon age, also overcome the graphical limitations of the simple histogram and the
bar chart.

Constructed in this way, a cumulative probability curve shows the distribution of a set of
radiocarbon dates over the radiocarbon time scale. The shape of this curve is often
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interesting. Law pointed out that under the proper conditions “the distribution may suggest
the intensity of prehistoric occupation through time” (Black and Green 1977) and Anderson
used observations on skewing to infer that moa hunting intensified more slowly than it died
out. A difficulty with these and other inferences based on cumulative probability curves is
that radiocarbon years and calendar years are not equal, nor can their relationship be
described with a constant. A large body of work dating materials of known age has shown
that the relationship between radiocarbon years and calendar years varies over time,
primarily because of fluctuations in the production of "“C in the upper atmosphere. Thus,
apart from very general statements, the temporal interpretation of inferences based on
cumulative probability curves is unclear. Using Anderson’s inference as an example, it may
have taken a greater number of radiocarbon years for moa hunting (o intensify than to die
out, but the variable relationship between radiocarbon and calendar years makes it
impossible to infer, on the basis of cumulative probability curves alone, that intensification
took a greater number of calendar years.

This potential difficulty with the temporal interpretation of cumulative probability curves
led us to investigate an alternative statistical graphic based on output from CALIB, a
computer program that converts radiocarbon ages (0 calendar years. Recent versions of the
CALIB program provide an option that calculates relative probability curves for individual
age determinations. This option uses information on the relationship of radiocarbon ages and
calendar years to modify the shape of the Gaussian curve for each sample. The amount of
modification to the Gaussian curve is, in part, a function of the age of the dated material.
In extreme cases, which are particularly common for materials dating to the last 300 years,
two or more calendar years share the same radiocarbon age, so that the first-order relative
probability curve produced by CALIB is multi-modal. Older materials generally yield a
unimodal first-order curve, but with numerous second-order peaks and valleys. Figure 1
compares three graphical representations of a single radiocarbon age determination; first as
its contribution to a histogram, second as a Gaussian curve centered at the radiocarbon age
B.P., and last as output from CALIB. As the CALIB output for this example shows, a
Gaussian curve may be a poor approximation of the calendrical age probability distribution,
especially over the last 300 years.

THE ANNUAL FREQUENCY DISTRIBUTION DIAGRAM

The mechanics of constructing an annual frequency distribution diagram are nearly identical
to those of the cumulative probability curve. The two displays differ primarily in the nature
of the data used as input. CALIB relative probability curves, the raw data from which an
annual frequency distribution diagram is constructed, are calculated by the CALIB program
S0 that the maximum relative probability for any year is unity. This means that the areas
beneath curves can differ from one another. In order o ensure that each sample contributes
equally to the annual frequency distribution diagram, the relative probability curve for each
sample is first normalised so that the sum of probabilities in its range is unity. These
normalised curves are then summed.

An estimate of the systematic error in this procedure can be gained by constructing an
annual frequency distribution diagram for a known distribution and comparing observed and
expected values. Figure 2 shows two annual frequency distribution diagrams constructed
from simulated samples. The sample data for each annual frequency distribution diagram
consisted of one radiocarbon event annually, to produce a uniform distribution over a range
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Figure 1: Three graphical representations of a single datum: a) histogram; b) Gaussian
curve; and ¢) CALIB relative probability curve normalised so the area under the curve is
unity. The jagged portions of the Gaussian curve are due to the file format of CALIB output
files, which records numbers to four decimal places. Extra decimal places would yield a
smoother curve. Note the approximate Gaussian shape of the left-hand side of the CALIB
relative probability curve and the extreme deviations of the right-hand side. The deviations
are due to the pronounced deVries effects for the period after A.D. 1650, and to the Suess
effect after A.D. 1900 (see Taylor 1987: 35 ff.).
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encompassing the interval from 6000 B.C. to A.D. 1950. The over 8,000 events in each
sample were converted to conventional radiocarbon ages. The radiocarbon ages in the first
sample were assigned an experimental uncertainty of 50 radiocarbon years and those in the
second sample an experimental uncertainty of 100 radiocarbon years. The radiocarbon ages
were then treated as described above to produce Figure 2. The figure shows that the
observed distribution of each sample is centered around the expected distribution, with a
mean of 1.0, and that deviations from the expected distribution vary inversely with the size
of the mean experimental uncertainty. The observed distribution of the sample with an
experimental uncertainty of 50 ranges between (.46 and 1.24, with a standard deviation of
0.1. The observed distribution of the sample with an experimental uncertainty of 100 ranges
between 0.75 and 1.12, with a standard deviation of 0.06. In our experience, the mean
experimental uncertainty in large radiocarbon datasets is close to 10X, so that the small
standard deviation of this latter sample lends credence to the claim that the procedures used
to construct an annual frequency distribution diagram yield curves that are analytically
useful.

Systematic error, even of this relatively small magnitude, has the potential to confound
analysis, so it is useful to normalise an annual frequency distribution diagram for this source
of error. In general, this can be accomplished by calculating the percent deviation from the
mean at each year of a curve like Figure 2 and subtracting this percentage of the y-axis
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Figure 2: Observed and expected values for two annual frequency distribution diagrams of
hypothetical samples of known distribution. The upper sample has an experimental
uncertainty of 100 "“*C years; the lower sample 50 "“C years. Note the relative smoothness
of the upper curve.
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height from the corresponding year of an annual frequency distribution diagram. Ideally,
distributions with the same general shape, statistical uncertainty, and size of each data set
analysed would be generated, but this practice is limited by the capacity of computers
generally available to prehistorians. Therefore, standard normalisation curves derived from
uniform distributions can be used, with the choice of normalisation curve dependent upon
the mean statistical uncertainty of the data being analysed. Clearly, this procedure will rarely
remove all of the systematic error from an annual frequency distribution diagram and we
discuss below constraints this might place on the interpretation of annual frequency
distribution diagrams.

A more intuitive feel for the validity of the annual frequency distribution diagram
construction procedure can be gained from Figure 3, which compares three graphical
representations of the same data set. Here it can be seen that the histogram, the cumulative
probability curve, and the annual frequency distribution diagram all share the same basic
first order shape, with a long low tail to the left and a major peak followed by a decline at
the right. Many of the details vary. Note particularly the differences between the slopes
leading to and from the major peak of the cumulative probability curve and the annual
frequency distribution diagram. Temporal inferences about the development and decline of
the cultural trait associated with this major peak might be affected by the choice of
graphical display.

CONFIDENCE INTERVALS

In most situations, annual frequency distribution diagrams will be constructed from a sample
drawn from a population of potential radiocarbon age determinations. When this is the case,
and the distribution of the population, rather than the sample, is of interest, then it is
desirable to compute confidence intervals for the annual frequency distribution diagram.
Recent advances in statistical method, made possible through the falling costs and greater
availability of computer time, now provide a means for calculating confidence intervals for
data, like those of aggregate "*C age determinations, that do not conform to known, or
mathematically analysed, distributions. We have chosen one of these, the bootstrap, to
calculate confidence intervals directly from the data, without assumptions about their
distribution (Efron 1979; Efron and Tibshirani 1991).

The bootstrap is built on the concept of the bootstrap sample, which is a sample of size
n drawn with replacement from a data set X = (x,, X,, ..., X,). In a bootstrap sample x™ = (x,,
x5, ... x,) each x°, is a randomly selected member of the original data set. In rare instances
x= x,, butit is more usually the case that some x, are not selected and others are selected
more than once. Intervals with a desired confidence C are computed by drawing a large
number B of independent bootstrap samples, each of size n, with a random number
generator; constructing an annual frequency distribution diagram for each of the B bootstrap
samples; and finding, for each year of the annual frequency distribution diagram range, the
empirical interval within which C samples fall. Where C = 0.9, the minimum number of
bootstrap samples required is 20; the smallest and largest values at each year are discarded
and the remaining range of 18 samples ('*/,, = 0.9) yields the bootstrap confidence interval.

Figure 4 shows the data set of Figure 3 with .95 bootstrap confidence intervals. The
confidence intervals are sufficiently wide to encompass any systematic error that was not
removed by the normalisation procedure. In fact, the width of the intervals for a sample this
size obscures all but the first order shape of the curve, with its peak between A.D.
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Figure 3: Three graphical representations of a single data set: a) frequency histogram; b)
cumulative probability curve; and ¢) annual frequency distribution diagram. The data are 61
“C dates from O‘ahu, Hawai'i; they are used for illustrative purposes only. All three
graphical representations share a similar first order shape: a long, low tail at the early end
of the x-axis is followed by a peak toward the late end and a subsequent decline. The details
vary somewhat. Note the different shapes of the major peak: the histogram and the
cumulative probability curve both yield relatively wide peaks, with fairly gentle left-hand
slopes. In contrast, the slope on the left-hand side of the annual frequency distribution
diagram is abrupt.
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Figure 4: The data set of Figure 3, with 0.95 bootstrap confidence intervals.

1300-1450 and subsequent decline. In our own work with annual frequency distribution
diagrams we resist the temptation to invest meaning in small-scale features of the curve.
Instead, we visualise the smoothest curve that can be drawn within the constraints of the
confidence intervals, and limit our inferences to these relatively large-scale features of the
curve. Interpreted this way, we are confident that the small amount of residual systematic
error in an annual frequency distribution diagram does not confound analyses.

TWO COMPUTER PROGRAMS: SUM'"'C AND UNCALIB

In the course of our work with aggregate “C data we developed two computer programs,
SUM"C and UNCALIB, to facilitate the construction of cumulative probability curves,
annual frequency distribution diagrams, and bootstrap confidence intervals. UNCALIB uses
information on the radiocarbon age and statistical uncertainty of dated materials to produce
the Gaussian curves used in the construction of cumulative probability curves. SUM"C sums
Gaussian or CALIB relative probability curves to produce either cumulative probability
curves or annual frequency distribution diagrams, and will construct bootstrap confidence
intervals for both. UNCALIB and SUM"C, for use with the DOS 2.0 and greater, are both
available either from the senior author or from the anonymous FIP site 155.68.2.2 in the
SAS sub-directory (Society for Archacological Sciences).
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