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Introduction 
 
This paper describes using machine learning (ML) techniques to assist in analysis 
of shellfish midden remains from archaeological sites in New Zealand. Midden 
analysis is the most common post-excavation analysis undertaken in prehistoric 
archaeological projects. Machine learning (ML) tools present the possibility of 
moving some of that work to automated systems which would then allow more 
time to be focused on the most complex and specialised tasks associated with 
such investigations. This work builds on discussion of such techniques used for 
the identification of historic ceramic patterns (e.g., Bickler 2018, this volume) and 
site identification from elevation data (e.g., Jones and Bickler 2017). No detailed 
discussion is presented here on the range of possibilities and importance of 
midden analysis as these are well covered in numerous publications in the New 
Zealand context (e.g., HNZPT 2014 and references listed there). The objective is 
to demonstrate how ML can assist with midden analysis although any useful tool 
will require additional hardware and software developments to get close to the 
level of expertise required for specialist work. Shell identification is not 
particularly difficult, but counting large quantities of shell is time-consuming.  
 
Preliminary experiments in using ML for midden analysis shown here involve 
two separate types of analysis. The first is the creation of relevant images of shell 
samples for identification, with the goal of allowing scaling for analysing 
excavation midden in the future. The second uses ML to undertake the processing 
of the images to produce useful data for typical midden analysis such as species 
identification, counts and size estimates. The process described here involved: 
 

1. Training a computer to identify different species of shell commonly 
found in New Zealand archaeological sites using collections of images; 

2. Testing the species identification model; 
3. Using an image of the shells to be identified; 
4. Segmentation of individual shells from the combine sample image; 
5. Species identification of each shell image; 
6. Count of each shell species; 
7. Evaluation. 
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The analysis was undertaken in the Microsoft RClient (part of the Microsoft 
Machine Learning Server or MMLS) environment to the R Statistics package 
(cran.r-project.org) and the Microsoft Machine Learning Server. The software 
and examples used are available free and this makes it easier and more cost-
effective for future development by archaeologists. 
 
Sorting and Segmentation 
 
The first part of the analysis involves using tools to segment the images of 
individual shells from photos of a collection of shells, such as a midden sample.  
This process does not involve any ML but the algorithms used to individuate 
objects from images derive from general computer vision (CV) analysis with 
many different solutions.  The method adopted here derives from software used to 
identify cells in microscopic images using a R statistics package called EBImage 
(Pau et al. 2010; available from bioconductor.org). 
 

 
 

Figure 1. Photograph of “midden sample” showing a range of species used to 
test the ML model 

 
An example image (Figure 1) showing a range of species found in the midden 
sample was analysed to distinguish each shell separately. The masking algorithm 
looks at areas of bright colour (i.e. white) versus a dark background colour and 
creates a “mask” that bounds each high contrast area and identifies that as a 
separate object, in this case a shell. Fine tuning the masking image analysis is 
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specific to the lighting and exposures of each photo, but that relates as much to a 
lack of standardisation of setup and could be remedied.  Once the masking of the 
individual shells is accurate, each separate object/shell image is saved as a new 
image for later identification (Figure 2). 
 

 
Figure 2. Segmented images of shells from the “midden sample.” 

 
Several issues are immediately apparent. Each shell must be separated out in the 
group photograph so that it can be masked properly.  It is possible for overlapping 
shells to be separated but the process of segmentation becomes more difficult and 
unreliable. There are solutions for getting around the problem, such as large 
sorting trays, and conveyor belts which could be used to ensure each object is 
identified quickly and efficiently, but this is beyond the scope of the current work.  
 
A more difficult problem relates to managing fragmentary shell. Obviously, the 
more fragmented the shell, the more difficult and unreliable any later automated 
identification and analysis will be.  However, there are elements of that issue that 
can be explored using the CV tools.  Figure 3 shows a photograph of a small pile 
of cockle shell, distinguishable but close together.  The masking was designed to 
centre on each object but not necessarily go fully out of the boundaries of the 
object, as this could mean that neighbouring objects would be grouped together. 
Each segmented shell was identified and the automated count of “objects” 
matched the number of shells. Other approaches such as using multiple images of 
a pile of shells, for instance, could give a volumetric value and along with 2D 
image counts and size estimates. An automated system could then provide a 
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reasonable estimate of the number of shells, level of fragmentation, potentially, 
and hence MNI which could be compared with weight and other methods of bulk 
sample analysis. 
 

 
 

Figure 3. Cockle pile from midden (left) and segmented images of identified 
individual cockle shells. 

 
One bonus of the image segmentation is that it is possible for the size of the shell 
to be calculated.  It is straightforward to calculate the size of each shell identified 
by measuring the area of the shell image created by the mask. While this is in 
“pixels”, as long as a photo-scale is included in the larger image (and no other 
scaling occurs), it is easy to convert that measurement into square mm or cm. As 
well as area, the maximum length and width can also be calculated and recorded.  
No testing has been done to explore the accuracy of these measurements 
compared with manual measurement, but for some species the “area” measure on 
a 2D plane may be a better size indicator than just length, which is the commonly 
used approach. 
 
Machine Learning 
 
The next stage is building a trained ML model used to identify shell species. ML 
refers to the branch of computing which describes the study and programming of 
algorithms allowing computers to learn from data and then make predictions from 
that data (see e.g., Shalev-Shwartz and Ben-David 2014).  Broadly speaking, ML 
uses statistical techniques to analyse a set of categorised “training” data and 
derive a series of mathematical descriptions (“descriptors” or “feature vectors”) 
for each of the images. Ideally, each category of object is therefore 
mathematically distinct from all other categories so creating a trained model is all 
about finding the best set of mathematical “features” for accurately identifying 
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each example for all the categories.  Archaeologists familiar with statistical 
techniques such as principal components analysis and discriminant analysis (see 
for example in obsidian sourcing studies such as McCoy and Carpenter 2014), use 
many of the same algorithms to create the descriptors or feature vectors. In the 
case of image data, as used here, each image is converted into a set of feature 
vectors, “image featurisation”, and these are then analysed to create the groups of 
different images, in this case different shell species. 
 
Creating good models typically requires thousands of images, but for most 
archaeological purposes that can be difficult to achieve.  The approach taken here 
uses a pre-trained deep neural network (DNN) model to extract relevant features 
from images, so the model has some information about how to cope with image 
data (relating to distinguishing different objects in images) and then adding the 
smaller library of images relevant to the specific task, shells, to build image 
features that are specifically relevant (see Horton and Paunic 2017, Shalev-
Shwartz and Ben-David 2014: 268ff). 
 
Species Identification Model – Image Featurisation 
 
The training of the shell identification model was done using the image 
featurisation abilities of the Microsoft Machine Learning Server software.  The 
MMLS allows for use of a pre-learned DNN model, in this case the ResNet 101 
model (He et al. 2015).  This is one of the larger models available and based on 
thousands of small images, 224 pixels in size that has already been analysed to 
create a set of image features. The MMLS server is accessed via the R Statistics 
package, which then also manages the featurisation of the shell library and test 
sample images and combines the results with the segmentation information. 
 
The methodology here follows in part from an example classifying the 
morphology of different wood knots (Horton and Paunic 2017) which relates to 
grading timber. This shows how flexible the ML approach can be when applied. 
The machine learning models are rapidly evolving, and new options will no doubt 
change and improve on the reported example. 
 
Ten species were chosen for this experiment to create a trained model for shell 
identification. The species included those commonly targeted by Maori during 
prehistory including, pipi (Paphies australis), cockle (Austrovenus stutchburyi), 
ostrich foot (Struthiolaria papulosa), tuatua (Paphies subtriangulata), mudsnail 
(Amphibola crenata), mud whelk (Cominella glandiformis), limpet (Cellana 
radians), cat’s eye (Turbo smaragdus), ringed dosinia (Dosinia anus) and scallop 
(Pectin novaezelandiae).  The selection allowed for some likely confusion with 
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shells such as the pipi and tuatua and the cockle and dosinia which are similar in 
shape but not size, as well as a mixture of univalves and bivalves.   
 
A library of training images was then created for each of the 10 species.  The 
target was to create around 20 images for each species using archaeological 
reports and the web although that number varied between 8 for limpets and 27 for 
ringed dosinia and tuatua. A total of 191 images were used for the initial model. 
The variability was purposeful because testing the robustness and flexibility of 
the model was part of the investigation. 
 
The training images were processed to remove any background information.  
Some images were created from base images by rotation and mirroring the 
original image to bring the numbers up to ensure that the model was trained on 
the shape from different angles to make sure orientation was not likely to matter 
in later species identification. 
 
The image featurisation was then carried out using the MMLS server in R 
(rxFeaturize function). This includes converting the images to match those of the 
Resnet 101 image library in size and then extracting the feature vectors that 
represent each of the shell images.  This image featurisation library can be saved 
and reloaded, as well as expanded or altered to include new images and species. 
The next step was to examine how well the model works with respect to 
distinguishing between the different species. The featurised data is randomly split 
(typically around 2/3 to ¾) to go into the training set with the rest into a test 
sample.  A “Random Forest” algorithm is then used to fit the feature vectors to 
the species identification for the training samples (using R package 
randomForest package [Liaw and Weiner 2002]), which means that that set 
describes what each species “looks like”. The test data is then tested against the 
“fitted data” and the probability of each sample belonging to a species is 
calculated.  The accuracy of the tested model can then be examined to determine 
how well the classification worked.  An example of the results can be summarised 
in a “confusion matrix” (Figure 4) which compares the known species against the 
predicted species of the images from the test sample. Around 85% of the test 
images were accurately identified, but the result varies between around 75-90% 
as the choice of training data and testing data is changed. 
 
The result is not perfect but given the small library of training data, very 
promising. Each column shows the number of shell images from the testing group 
comparing which species they were predicted to be in versus the one to which 
they actually belong. Ideally, each species column will be single and in their 
correct class, which most of them are except for cat’s eye, ringed dosinia and 
tuatua (in the example shown in Figure 4). As expected, depending on the sample 
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selection some images of pipi or tuatua are confused but overall the model gets 
most of them correct.  Other confusions such as cockle and the ringed dosinia are 
similarly mixed up at times because when the images are scaled to a uniform size 
they are indeed quite similar. This may also explain confusions between cat’s eye, 
mud whelks and mud snails. Some confusion also lies in the difference between 
images of shells in good condition and worn examples found in excavations. 
 

 
 

Figure 4. Mosaic plot showing the confusion matrix of a test sample of a 1/3 of 
the data. 

 
Putting It All Together 
 
Despite the deficiencies in the trained model, the results were considered good 
enough for analysing the midden sample.  The individual shell images from the 
midden sample (Figure 2) were then “featurised” using the same process of the 
library data described above to create the species identification model.  
Furthermore, the masked area of each shell was measured, along with other 
parameters, scaled based on the original image scalebar, and the area of each shell 
calculated and saved for the later analysis. The random forest classification was 
then applied once more and a predicted probability for each shell match to a 
species was calculated. The results are shown in Figure 5 and summarised in 
Table 1. Despite the complexity, these steps do not take a standard computer 
more than a few minutes to complete. 
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Figure 5. Mosaic plot showing categorisation of “unknown” midden sample 
species identification 

 
The results are good given the quality and partial fragmentation of the samples. 
The ostrich foot is correctly identified and pipi, tuatua distinguished, and despite 
the scallop shell being damaged, it is also correctly identified. The other species 
are less reliable but given some damage, fragmentation and poor quality of the 
images of smaller shells, the results are still promising. The probabilities shown 
in Table 1 reflect the range of reliability of the predicted classification. Those 
values can be further analysed to provide the process of secondary analysis that 
might focus on distinguishing more difficult samples using more focused models.  
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Table 1. Result of species identification of midden sample using the ML model 
showing predicted probabilities of each shell to species and estimated shell area. 
Highlighted values show best match. 
 

Known	
  
species	
  

Cats	
  
eye	
   Cockle	
   Limpet	
  

Mud	
  
snail	
  

Mud	
  
whelk	
  

Ostrich	
  
foot	
   Pipi	
  

Ringed	
  
dosinia	
   Scallop	
   Tuatua	
  

Predicted	
  
species	
  

Shell	
  
area	
  
(cm2)	
  

Ostrich	
  
foot	
   0.102	
   0.084	
   0.04	
   0.108	
   0.152	
   0.308	
   0.042	
   0.058	
   0.062	
   0.044	
  

Ostrich	
  
foot	
   25	
  

Mud	
  
snail	
   0.152	
   0.086	
   0.064	
   0.106	
   0.186	
   0.112	
   0.078	
   0.052	
   0.082	
   0.082	
  

Mud	
  
whelk	
   5	
  

Scallop	
   0.052	
   0.082	
   0.046	
   0.054	
   0.066	
   0.14	
   0.05	
   0.072	
   0.366	
   0.072	
   Scallop	
   62	
  
Cat's	
  
eye	
   0.152	
   0.066	
   0.062	
   0.12	
   0.144	
   0.05	
   0.152	
   0.068	
   0.068	
   0.118	
  

Cats	
  
eye/pipi	
   3	
  

Tuatua	
   0.12	
   0.064	
   0.05	
   0.114	
   0.13	
   0.06	
   0.138	
   0.032	
   0.08	
   0.212	
  Tuatua	
   12	
  

Limpet	
   0.118	
   0.118	
   0.146	
   0.098	
   0.15	
   0.06	
   0.084	
   0.07	
   0.07	
   0.086	
  
Mud	
  
whelk	
   4	
  

Dosinia	
   0.096	
   0.056	
   0.042	
   0.13	
   0.208	
   0.178	
   0.062	
   0.078	
   0.076	
   0.074	
  
Mud	
  
whelk	
   4	
  

Pipi	
   0.09	
   0.116	
   0.11	
   0.104	
   0.108	
   0.038	
   0.142	
   0.106	
   0.058	
   0.128	
  Pipi	
   5	
  
 
Discussion 
 
This paper demonstrates a first attempt at creating a tool for automated midden 
analysis using ML techniques and shows these techniques can be used in 
archaeological analysis of midden. The current process requires using 
photographs or video to record the midden which is a hurdle, although some 
additional benefits might accrue in creating a detailed digital record of the midden 
and to get additional morphological data from the shells.  
 
Another issue is that there are many species of the shellfish that are only minor 
variants of each other that are detectable by an expert but not necessarily easy to 
train from images.  Where these species are from geographically distinct areas, 
the archaeologists could reclassify their results appropriately without much 
problem, but otherwise more detailed model building would be required. Creating 
region specific models that focus on the species likely to be found in a sample 
rather than using a one-size fits all model is one possibility. Misclassification of 
species can also be minimised by pre-training models of the species of shells 
identified from a sample of the actual midden and eliminating those shells species 
that are not present.  This means that limiting the choices available will make the 
model less likely to produce false results with an emphasis then on the counting 
and sizes of those species known. 
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Another problem that arose from using the pre-trained models for the shell was 
that it eliminated size as a significant morphological trait.  This was particularly 
relevant during the model building which standardised all the images for analysis 
to around 220+ pixels on each side.  The effect of this is to remove shell size as a 
variable which meant species that are morphologically similar but different in size 
were confused. Juvenile specimens would also then become a factor.  A larger 
and improved library of species images should greatly improve the model. 
 
The experiments shown here demonstrate that ML represents a viable process for 
improving midden analysis. The motivation for improving the speed of midden 
analysis that techniques such as  ML tools offer, relate to the demands of ensuring 
that sufficiently large samples of midden are analysed quickly and efficiently. 
The example demonstrated here is one process and new tools are rapidly 
changing the ease and effectiveness of ML application development. The analysis 
of other faunal remains, tool morphology and non-image based data such as 
chemical sourcing concentrations are just some of the other applications where 
ML could be effective. ML techniques are likely to transform analysis for 
prehistoric archaeology in the future. 
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